半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
马尔可夫预测的多目标优化储能系统平抑风电场功率波动
作者:
作者单位:

1.内蒙古工业大学能源与动力工程学院,内蒙古自治区呼和浩特市010051;2.内蒙古电力(集团)有限责任公司内蒙古电力科学研究院,内蒙古自治区呼和浩特市010020

作者简介:

薛宇(1986—),男,博士研究生,工程师,主要研究方向:新能源发电与储能技术。E-mail:xueyu@tianrun.cn

通讯作者:

任永峰(1971—),男,通信作者,博士生导师,教授,主要研究方向:新能源发电、智能电网、电力系统电能质量控制。E-mail:renyongfeng@vip.sina.com

基金项目:

国家自然科学基金资助项目(51967016,51567020); 内蒙古自治区科技计划资助项目(201802035); 内蒙古自治区自然科学基金资助项目(2015MS0532)。


Multi-objective Optimization of Energy Storage System with Markov Prediction for Power Fluctuation Suppression of Wind Farm
Author:
Affiliation:

1.College of Energy and Power Engineering, Inner Mongolia University of Technology,Hohhot010051,China;2.Inner Mongolia Electric Power Research Institute of Inner Mongolia Power (Group) Co., Ltd.,Hohhot010020,China

Fund Project:

This work is supported by National Natural Science Foundation of China (No. 51967016, No. 51567020), Inner Mongolia Autonomous Region Science and Technology Plan Funding Project (No. 201802035) and Inner Mongolia Autonomous Region Natural Science Foundation of China (No. 2015MS0532).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在高比例风电主导的可再生能源电力系统中,配置储能系统是缓解风电功率波动、实现削峰填谷、提高风电可调度性的有效解决方案。文中从大规模储能出力水平以及风电未来输出对当前储能运行影响的角度出发,设计了风储联合运行的多目标优化仿真模型。采用马尔可夫预测模型形成风功率未来输出评估,同时利用粒子群优化算法实时滚动优化风储并网功率,获得储能电池最优运行策略。利用某百兆瓦级风电场的典型风功率数据进行仿真,仿真结果表明所提方法平滑效果良好,避免了储能电池过度充放电,防止了储能电池进入死区的情况,提高了风储一体化系统的可靠性和经济性。

    Abstract:

    In the renewable energy power system dominated by high proportion of wind power, configuring energy storage system (ESS) is an effective solution to suppress wind power fluctuations, achieve peak load shaving and improve wind power dispatchability. A multi-objective hybrid optimization simulation model for joint wind power and energy storage operation is designed, which integrates the impact of output level of the large-scale energy storage and the future output of wind power on the current energy storage operation. Markov prediction model is adopted to forecast the future output of wind power, and particle swarm optimization algorithm is used to optimize the grid-connected power of wind power and energy storage system in real time, then the optimal operation strategy of ESS can be obtained. The typical wind power data from a hundred-megawatt wind farm are used for simulation. Simulation results show that the proposed method has good smoothing performance, which avoids excessive charging and discharging of ESS and prevents it from entering dead zone, and further improves the reliability and the economy of the integrated system of wind power and energy storage.

    表 2 Table 2
    图1 风储一体化混合系统结构Fig.1 Structure of integrated hybrid system with wind power and energy storage
    图2 储能电池平滑风电波动示意图Fig.2 Schematic diagram of wind power fluctuation smoothed by energy storage battery
    图3 并网功率波动、储能输出及充放电深度成本函数Fig.3 Grid-connected power fluctuation, energy storage output, and cost functions of charging/ discharging depth
    图4 并网功率、功率波动和SOEFig.4 Grid-connected power ,power fluctuation and SOE
    图5 不同电池容量下功率波动和SOEFig.5 Power fluctuation and SOE with different battery capacities
    图 马尔科夫状态转移矩阵Fig. Markov state transition matrix
    表 1 Table 1
    参考文献
    相似文献
    引证文献
引用本文

任永峰,薛宇,云平平,等.马尔可夫预测的多目标优化储能系统平抑风电场功率波动[J].电力系统自动化,2020,44(6):67-74. DOI:10.7500/AEPS20190201001.
REN Yongfeng,XUE Yu,YUN Pingping,et al.Multi-objective Optimization of Energy Storage System with Markov Prediction for Power Fluctuation Suppression of Wind Farm[J].Automation of Electric Power Systems,2020,44(6):67-74. DOI:10.7500/AEPS20190201001.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-02-01
  • 最后修改日期:2019-10-15
  • 录用日期:
  • 在线发布日期: 2020-03-21
  • 出版日期: