半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
基于渐近数值法的静态电压稳定域边界高阶拟合方法
作者:
作者单位:

新能源电力系统国家重点实验室,华北电力大学,北京市 102206

作者简介:

冯卓诚(1995—),男,通信作者,博士研究生,主要研究方向:电力系统分析与控制。E-mail:fzcrml@163.com
万凯遥(1992—),男,博士研究生,主要研究方向:电力系统分析与控制。E-mail:wankaiyao009@163.com。
姜彤(1970—),男,教授,博士生导师,主要研究方向:电力系统分析与控制、大规模电力储能。E-mail:Jiangtong @ncepu.edu.cn

通讯作者:

基金项目:


High-order Fitting Method of Boundary for Static Voltage Stability Region Based on Asymptotic Numerical Method
Author:
Affiliation:

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为实现静态电压稳定边界的快速准确计算,提出了一种基于渐近数值方法拟合静态电压稳定边界的算法。算法对电压崩溃点处的方程组进行分析,得到了静态电压稳定边界高阶偏导数的通式。基于渐近数值方法,分析了拟合误差与边界范围的关系。所提方法一方面避免了传统方法的多次潮流计算,耗时降低且有更高的精度;另一方面,计算高阶偏导数时可复用已有系数矩阵的因子表,计算量小。最后,给出了基于算法的相关应用,并将IEEE 118节点系统作为算例,验证了本算法的有效性。

    Abstract:

    In order to calculate the static voltage stability boundary rapidly and precisely, an algorithm of fitting static voltage stability boundary based on asymptotic numerical method is proposed. By analyzing the equations formulated by the voltage collapse point, the general formula of the high-order partial derivatives of the static voltage stability boundary is obtained. Based on the asymptotic numerical method, the relationship between the fitting error and the boundary area is analyzed. The method avoids the multiple power flow calculations in traditional method, and has higher accuracy and lower time cost. On the other hand, the factor table of the existing coefficient matrices can be reused when calculating the high-order partial derivatives, which decreases the calculation burden. Finally, the related applications based on the method are presented. The cases based on IEEE 118 node system are established to verify the effectiveness of the proposed method.

    表 3 各阶导数值Table 3 Derivative values of different orders
    表 7 Table 7
    表 5 不同算法的时间对比Table 5 Time comparison of different algorithms
    图1 节点20与节点7的二维注入功率空间SVSR边界Fig.1 Two-dimensional SVSR boundary of injection power space based on node 20 and node 7
    图2 负荷节点20的二维注入功率空间SVSR边界Fig.2 Two-dimensional SVSR boundary of injection power space based on load node 20
    图3 不同阶数下的SVSR边界残差Fig.3 SVSR boundary residues with different orders
    图4 基于渐近数值法的三维注入功率空间SVSR边界Fig.4 Three-dimension SVSR boundary of injection power space based on asymptotic numerical method
    图 节点20有功与无功的二维注入功率空间SVSR边界Fig. Two dimensional injection of SVSR boundary in power space based on active power and reactive power of node 20
    图3 节点4与节点7的二维注入功率空间SVSR边界Fig.3 Two dimensional injection of SVSR boundary in power space based on active power of node 4 and active power of node 6
    表 4 二维边界算法时间对比Table 4 Time comparison of two-dimension boundary algorithms
    表 2 状态变量形成的雅可比矩阵最小奇异值Table 2 Minimum singular values of Jacobian matrix formed by state variables
    表 6 不同负荷增长方式下静态电压稳定指标Table 6 Static voltage stability indices with different load growth patterns
    图 渐近数值法构造SVSR边界流程图Fig. Flow chart using asymptotic numerical method for constructing SVSR boundary
    参考文献
    相似文献
    引证文献
引用本文

冯卓诚,万凯遥,姜彤.基于渐近数值法的静态电压稳定域边界高阶拟合方法[J].电力系统自动化,2020,44(7):100-106. DOI:10.7500/AEPS20190301001.
FENG Zhuocheng,WAN Kaiyao,JIANG Tong.High-order Fitting Method of Boundary for Static Voltage Stability Region Based on Asymptotic Numerical Method[J].Automation of Electric Power Systems,2020,44(7):100-106. DOI:10.7500/AEPS20190301001.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-03-01
  • 最后修改日期:2019-07-17
  • 录用日期:
  • 在线发布日期: 2020-03-25
  • 出版日期: