半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
基于风电出力模糊集的电-气耦合系统分布鲁棒优化调度
作者:
作者单位:

1.福州大学电气工程与自动化学院,福建省福州市 350108;2.武汉大学电气与自动化学院,湖北省武汉市 430072

作者简介:

张亚超(1985—),男,博士,讲师,主要研究方向:含新能源电力系统优化调度。E-mail:yczhang@fzu.edu.cn
黄张浩(1997—),男,硕士研究生,主要研究方向:配电网优化运行。E-mail:n190120042@fzu.edu.cn
郑峰(1983—),男,通信作者,博士,讲师,主要研究方向:微电网运行与控制。E-mail:zf_whu@163.com

通讯作者:

基金项目:

国家自然科学基金资助项目(61903088);福建省自然科学基金资助项目(2019J01249)。


Distributionally Robust Optimal Dispatch for Power-Gas Coupled System Based on Fuzzy Set of Wind Power Output
Author:
Affiliation:

1.School of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China;2.School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China

Fund Project:

This work is supported by National Natural Science Foundation of China (No. 61903088) and Fujian Provincial Natural Science Foundation of China (No. 2019J01249).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着可再生能源装机容量不断扩展及综合能源系统研究的持续推进,燃气轮机作为耦合元件加深了电力系统和天然气系统的相互融合,为可再生能源消纳提供了新的途径。针对随机规划方法、区间优化及鲁棒优化算法处理风电出力不确定性的不足,文中提出一种基于风电预测误差模糊集的分布鲁棒优化方法求解电力-天然气耦合系统的协同调度决策。首先,利用主成分分析法提取高维预测误差向量蕴含的时空尺度关联特性,并引入一系列矩函数描述预测误差的分布信息以构建相应的模糊集。然后,建立两阶段分布鲁棒优化经济调度模型,第1阶段制定日前机组开停机计划、调度出力及备用方案;第2阶段辨识最劣风电场景分布以保证第1阶段调度决策的有效性。结合线性决策规则和对偶理论将该半无限优化问题转化为有限维优化问题进行求解。最后,通过算例验证了所提模型及求解方法的有效性。

    Abstract:

    With the continuous expansion of renewable energy installation capacity and the persistent advancement of integrated energy system research, the gas-fired units deepen the integration of power system and natural gas system as the coupled components and provide a new way for renewable energy accommodation. Since the stochastic scheduling method, interval optimization and robust optimization algorithms have their own shortcomings in dealing with wind power uncertainty, a distributionally robust optimization approach based on fuzzy set of wind power prediction error is proposed to solve the collaborative dispatch problem for power-gas coupled system. Firstly, the principal component analysis is adopted to extract the temporal-spatial scale correlation characteristics of high-dimensional prediction error vector, and a series of moment functions are introduced to describe the distribution information of prediction errors to construct the corresponding fuzzy set. Then, a two-stage distributionally robust optimal ecomomic dispatch model is established. The first stage is used to make the unit commitment decision, power output and reserve configuration by units, and the second stage is used to identify the worst-case distribution of wind power to ensure the effectiveness of the scheduling strategy determined in the first stage. Combining the linear decision rule and dual theory, the above semi-infinite optimization problem can be transformed into a finite-dimensional optimization problem and then solved. Finally, the simulation results verify the validity of the proposed model and solution method.

    表 3 不同算例系统采用DDRO的仿真结果Table 3 Simulation results of different systems using DDRO
    表 1 不同场景结果比较Table 1 Results comparison in different scenarios
    表 2 不同场景调度结果比较Table 2 Comparison of dispatching results in different scenarios
    图1 不考虑气网约束的电力系统机组出力及上备用Fig.1 Power output and upper reserve of power system without consideration of gas network constraints
    图2 电-气耦合系统调度策略Fig.2 Dispatching strategies of power-gas coupled system
    图 二维数据空间重构Fig. Reconstruction of two-dimensional data space
    图 分布鲁棒优化模型求解流程Fig. The flowchart for solving the distributionally robust optimization model
    图 电力-天然气耦合系统Fig. Power and natural gas coupled system
    图 电、气负荷及风电功率曲线Fig. Power load, gas load and wind power curves
    参考文献
    相似文献
    引证文献
引用本文

张亚超,黄张浩,郑峰,等.基于风电出力模糊集的电-气耦合系统分布鲁棒优化调度[J].电力系统自动化,2020,44(4):44-53. DOI:10.7500/AEPS20190411006.
ZHANG Yachao,HUANG Zhanghao,ZHENG Feng,et al.Distributionally Robust Optimal Dispatch for Power-Gas Coupled System Based on Fuzzy Set of Wind Power Output[J].Automation of Electric Power Systems,2020,44(4):44-53. DOI:10.7500/AEPS20190411006.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-04-11
  • 最后修改日期:2019-09-02
  • 录用日期:2019-09-20
  • 在线发布日期: 2020-02-25
  • 出版日期: