半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
极端天气下智能配电网的弹性评估
作者:
作者单位:

上海电力大学电气工程学院,上海市 200090

作者简介:

通讯作者:

基金项目:

国家自然科学基金资助项目(51407113);上海绿色能源并网工程技术研究中心资助项目(13DZ2251900)。


Resilience Evaluation of Smart Distribution Network in Extreme Weather Condition
Author:
Affiliation:

School of Electric Power Engineering, Shanghai University of Electric Power, Shanghai 200090, China

Fund Project:

This work is supported by National Natural Science Foundation of China (No. 51407113) and Shanghai Engineering Research Center of Green Energy Grid-Connected Technology (No. 13DZ2251900).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    近年来受极端天气的影响,配电网大范围停电事故率不断上升,能够防御自然灾害、减小停电事故影响的弹性配电网引起了人们的重视。为了更好地评估配电网应对极端灾害的弹性,文中提出了一种智能配电网弹性评估方法。首先,建立了极端天气下的故障模型用以量化极端天气对配电网的影响。其次,针对极端天气的随机性,文中通过蒙特卡洛模拟极端天气场景并采用K-means聚类算法对场景进行缩减,根据脆弱性曲线可以得到配电网各支路的时变故障率。考虑到负荷、可再生能源出力的不确定性,采用拉丁超立方抽样抽取负荷、可再生能源出力和配电网故障场景对配电网进行弹性评估。然后,为了全面准确地反映含分布式电源的配电网弹性,将配电网遭受自然灾害时分为防灾和减灾2个阶段,并基于此构建了包括配电网防御时间、弹性恢复系数、孤岛可持续时间覆盖率和重要负荷平均中断时间在内的弹性评估指标体系。最后,对一包含2条馈线的实际配电系统的弹性进行仿真评估,并考虑了电力线路类型、光伏渗透率和联络线对配电网弹性的影响,验证了所提评估方法的有效性。

    Abstract:

    In recent years, due to the influence of extreme weather, the rate of large-scale blackouts in distribution networks has been raised, and the resilient distribution network that can resist natural disasters and reduce the impact of power failure accidents has attracted people’s attention. In order to better evaluate the resilience of distribution network to extreme disasters, a method for evaluating the resilience of smart distribution network is proposed. Firstly, a fault model in extreme weather is established to quantify the influence of extreme weather on the distribution network. Secondly, in view of the randomness of extreme weather, Monte Carlo simulation of extreme weather scenarios is adopted and K-means clustering algorithm is applied for scenarios reduction. Time-varying failure rate of each branch of distribution network can be obtained according to the vulnerability curve. Considering the uncertainty of load and renewable energy, Latin hypercube sampling is adopted to extract load, renewable energy and distribution network fault scenarios to evaluate the resilience of distribution network. Then, in order to fully and accurately reflect the resilience of distribution network with distribution generator, the distribution network is divided into two stages of disaster prevention and reductionwhen suffering from natural disaster. Based on this, index system of resilience evaluation is constructed contains defense time of distribution network, coefficient of resilience recovery, coverage rate of island sustainable time and mean interruption time of critical load. Finally, the simulation evaluation of the resilience of an actual distribution system with two feeders is carried out, and the influence of power line type, photovoltaic permeability rate and tie lines on the resilience of the distribution network is considered, which verifies the effectiveness of the proposed evaluation method.

    表 3 Table 3
    表 1 电力线路类型对配电网弹性的影响Table 1 Effects of power line type on resilience of distribution network
    表 2 Table 2
    图1 故障恢复过程Fig.1 Fault recovery process
    图2 极端天气下配电网内的负荷恢复过程Fig.2 Load recovery process in distribution network with extreme weather
    图3 配电网弹性评估流程图Fig.3 Flow chart of resilience evaluation for distribution network
    图4 光伏渗透率对弹性的影响Fig.4 Effects of phtovoltaic penetration rate on resilience
    图5 联络线安装位置对弹性的影响Fig.5 Effects of location for interconnection line on resilience
    图 仿真算例Fig. Simulation example
    图 系统元件故障率与风速的影响Fig. Influence of wind speed on failure rate of system components
    图 配电网线路的时变故障率Fig. Time-varying failure rate of distribution network lines
    表 4 Table 4
    参考文献
    相似文献
    引证文献
引用本文

李振坤,王法顺,郭维一,等.极端天气下智能配电网的弹性评估[J/OL].电力系统自动化,http://doi.org/10.7500/AEPS20190418008.
LI Zhenkun,WANG Fashun,GUO Weiyi,et al.Resilience Evaluation of Smart Distribution Network in Extreme Weather Condition[J/OL].Automation of Electric Power Systems,http://doi.org/10.7500/AEPS20190418008.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-04-18
  • 最后修改日期:2020-01-19
  • 录用日期:2019-08-14
  • 在线发布日期:
  • 出版日期: