半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
电力系统电磁暂态仿真IGBT详细建模及应用
作者:
作者单位:

电力系统及发电设备控制和仿真国家重点实验室,清华大学北京市 100084

作者简介:

沈卓轩(1991—),男,通信作者,博士,现在博士后工作站进行研究,主要研究方向:电力系统电磁暂态仿真。E-mail:zxshen@mail.tsinghua.edu.cn
姜齐荣(1968—),男,教授,博士生导师,主要研究方向:电力系统分析与控制、柔性交流输配电系统建模与控制、电能质量分析与控制。E-mail:qrjiang@mail.tsinghua.edu.cn

通讯作者:

基金项目:

国家自然科学基金资助项目(51490680,51490683)。


Detailed IGBT Modeling and Applications of Electromagnetic Transient Simulation in Power System
Author:
Affiliation:

State Key Laboratory of Control and Simulation of Power System and Generation Equipments, Tsinghua University, Beijing 100084, China

Fund Project:

This work is supported by?National?Natural?Science?Foundation?of?China (No. 51490680, No. 51490683).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在电力系统电磁暂态离线和实时仿真中,以绝缘栅双极型晶体管(IGBT)为代表的全控型电力电子器件常采用理想开关模型。IGBT器件在交直流变换器、直流断路器中获得了广泛的应用,器件的运行状态会对系统暂态过程产生影响,而系统的暂态过程也会增加器件的电压、电流应力,严重时可能造成器件损坏,进而影响整个设备及系统的安全可靠运行。基于理想开关模型的电磁暂态仿真无法准确模拟暂态过程中该器件的特性及其受到的应力。研究系统电路、器件及其控制之间的动态相互作用,就对电磁暂态仿真中IGBT准确建模提出了更高的要求。近年来,多种IGBT详细模型和解耦方法被提出,并被应用在离线及实时电磁暂态仿真中。得益于高性能计算设备的快速发展,详细模型可高效应用于含有大量IGBT器件的交直流系统仿真中。文中对不同类型建模方法进行归纳,分析其功能、计算复杂度和准确度,并详细介绍了系统解法、并行算法与仿真平台等方面内容。另外,还举例介绍了IGBT详细建模的应用场景,分析了在建模、系统解法、并行算法及应用领域等方面的难点与限制,并提出了相应的建议。

    Abstract:

    In power system off-line and real-time electromagnetic transient simulation, the ideal switch model is often used for typical controllable power electronics devices represented by insulated gate bipolar transistor (IGBT). With the increasing applications of IGBTs in AC/DC converters and DC circuit breakers, the operation status of IGBT can affect the dynamics of system transients which can increase the voltage current pressure of devices in serious cases. This may cause damage to the device and consequently threat the safe and reliable operation of the converter and the complete system. Electromagnetic transient simulation based on ideal switch model cannot accurately simulate the characteristics of the device and the pressure, which it is subjected to in the transient process. The study of the inter-dynamics among the system circuit, individual devices, and the corresponding control system requires IGBT modeling schemes with higher accuracy for electromagnetic transient simulation. In recent years, detailed modeling schemes of multiple IGBT and decoupling methods are proposed and applied in off-line and real-time simulation. Due to the rapid development of high-performance computing platform, relatively detailed models can be applied to the simulations of AC/DC power system with a large amount of IGBT devices. The modeling schemes are classified and the function, the modeling complexity, and the accuracy of various IGBT models are analyzed. The system solution schemes, parallel computing schemes and the simulation platforms in detail are also described. Moreover, typical applications of IGBT detailed modeling schemes are introduced. The difficulties and limitations in areas of IGBT modeling schemes, system solution methods, parallel computing schemes and applications are analyzed, and the corresponding research suggestions are proposed as well.

    表 4 Table 4
    表 1 系统求解方法计算复杂度比较Table 1 Computation complexity comparison among system solving schemes
    表 2 Table 2
    图1 系统级研究Fig.1 System-level study
    图2 IGBT稳态特性模型、输出特性及关断瞬态线性化波形Fig.2 IGBT steady-state characteristics model, output characteristics and linearized waveforms during turn-off transient
    图3 分段折线模型导通瞬态示意图Fig.3 Schematic diagram of piecewise linearized model during turn-on transient
    图4 IGBT器件结构示意图与Hefner模型电路图Fig.4 Structure schematic of IGBT device and circuit diagram of Hefner model
    图5 电热模型计算流程图及Foster热网络模型Fig.5 Flow chart of electrothermal model computation and Foster thermal network model
    图6 传输线模型分割示意图及模型电路图Fig.6 Decomposition schematic diagram and circuit diagram of transmission line model
    图7 多处理器片上系统示意图Fig.7 Schematic diagram of multi-processor system-on-chip
    图1 系统级研究Fig.1 System-level study
    图2 IGBT稳态特性模型、输出特性及Fig.2 IGBT steady-state characteristics model, output characteristics and linearized waveforms during
    图3 分段折线模型导通瞬态示意图Fig.3 Schematic diagram of piecewise linearized model during turn-on transient
    图4 IGBT器件结构示意图与Hefner模型电路图Fig.4 Structure schematic of IGBT device and circuit diagram of Hefner model
    图5 电热模型计算流程图及Foster热网络模型Fig.5 Flow chart of electrothermal model computation and Foster thermal network model
    图6 传输线模型分割示意图及模型电路图Fig.6 Decomposition schematic diagram and circuit diagram of transmission line model
    图7 多处理器片上系统示意图Fig.7 Schematic diagram of multi-processor system-on-chip
    表 3 Table 3
    参考文献
    相似文献
    引证文献
引用本文

沈卓轩,姜齐荣.电力系统电磁暂态仿真IGBT详细建模及应用[J].电力系统自动化,2020,44(2):234-246. DOI:10.7500/AEPS20190520001.
SHEN Zhuoxuan,JIANG Qirong.Detailed IGBT Modeling and Applications of Electromagnetic Transient Simulation in Power System[J].Automation of Electric Power Systems,2020,44(2):234-246. DOI:10.7500/AEPS20190520001.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-05-20
  • 最后修改日期:2019-08-23
  • 录用日期:
  • 在线发布日期: 2020-01-20
  • 出版日期: