半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
考虑源-荷互动的园区综合能源系统站-网协同优化
作者:
作者单位:

华北电力大学电气与电子工程学院

作者简介:

通讯作者:

基金项目:


Station-Network Cooperative Optimization of Integrated Energy System for Park Considering Source-Load Interaction
Author:
Affiliation:

College of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    建立了园区综合能源系统站-网协同优化双层模型,上层模型采用改进的p-中位模型,决策变量为能源站位置、容量及网架结构;下层模型考虑电、热负荷的需求响应特性,以电-热-气混合潮流为支撑,将可中断负荷与能源站进行协同调度。采用贪婪-变邻域蛛网算法求解上层模型,高效且可得到全局最优解;利用二阶锥松弛技术,将含有非凸气流约束的非线性规划问题转化为二阶锥规划问题,并采用凸-凹步骤法恢复解的确切性。通过算例表明,考虑源荷互动,可以有效降低系统的运行成本,并且使规划出的能源站容量更加经济合理。

    Abstract:

    A two-level model of station-network cooperative optimization of integrated energy system for park is established. The upper-level model is an improved p-median model, and the decision variables are the location and capacity of energy stations and network layout. Considering the demand response characteristics of electric and heat loads, the lower model coordinates the interruptible load with the energy station supported by the power-heat-gas multi-energy flow. The greedy-variable neighborhood-cobweb (GVNC) algorithm is used to solve the model, which can improve the computational efficiency and obtain the global optimal solution. Second-order cone relaxation (SOCR) is used to transform the non-linear programming problem into a second-order cone programming (SOCP) problem which is easy to solve. Convex-concave procedure (CCP) is used to solve the problem of accuracy recovery after relaxation. The example shows that considering the influence of source-load interaction, the operation cost of the system can be effectively reduced, and the planned capacity of the energy station can be more economical and reasonable.

    表 2 规划结果Table 2 Planning results
    表 1 不同场景概况Table 1 Overview of different scenarios
    表 4 Table 4
    表 5 Table 5
    图1 双层模型求解流程图Fig.1 Flow chart of solving bilevel model
    图2 园区规划路网图Fig.2 Planning road network of park
    图3 站-网结构规划图Fig.3 Structural planning of station-network
    图4 需求响应前后运行成本对比Fig.4 Comparison of operation costs with or without demand response
    图 冬季电负荷Fig. Winter electric load
    图 夏季电负荷Fig. Summer electric load
    图 过渡季电负荷Fig. Transition season electric load
    图 冬季热负荷Fig. Winter heat load
    图 夏季热负荷Fig. Summer heat load
    图 过渡季热负荷Fig. Transition seasonal heat load
    图 冬季气负荷Fig. Winter Natural Gas Load
    图 夏季气负荷Fig. Summer natural gas load
    图 过渡季气负荷Fig. Transition seasonal natural gas load
    表 3 考虑需求响应的能源站规划结果Table 3 Planning results considering demand response
    图 需求响应前后电负荷曲线Fig. Electric load curve with or without demand response
    图 需求响应前后热负荷曲线Fig. Heat load curve with or without demand response
    参考文献
    相似文献
    引证文献
引用本文

黄伟,柳思岐,叶波.考虑源-荷互动的园区综合能源系统站-网协同优化[J].电力系统自动化. DOI:10.7500/AEPS20190521003.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-05-21
  • 最后修改日期:2020-02-06
  • 录用日期:2019-09-02
  • 在线发布日期:
  • 出版日期: