半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
基于谐波传递矩阵的MMC换流站频率耦合特性建模与分析
作者:
作者单位:

1.浙江大学电气工程学院,浙江省杭州市310027;2.新能源与储能运行控制国家重点实验室(中国电力科学研究院有限公司),北京市100192)

作者简介:

年珩(1978—),男,通信作者,博士,教授,博士生导师,主要研究方向:新能源技术、风力发电技术等。E-mail:nianheng@zju.edu.cn

通讯作者:

基金项目:

国家自然科学基金资助项目(51622706)。


Modeling and Analysis of Frequency Coupling Characteristic for MMC Station Based on Harmonic Transfer Matrices
Author:
Affiliation:

1.College of Electrical Engineering, Zhejiang University,Hangzhou310027,China;2.State Key Laboratory of Operation and Control of Renewable Energy and Energy Storage Systems;(China Electric Power Research Institute),Beijing100192,China

Fund Project:

This work is supported by National Natural Science Foundation of China (No.51622706).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    模块化多电平换流器(MMC)应用于柔性直流输电系统可有效降低输出谐波和开关损耗,同时也带来突出的系统稳定性问题。阻抗稳定性分析方法可用来分析MMC系统运行时产生的稳定问题。现有文献建立的MMC阻抗模型均为正序阻抗和负序阻抗相互解耦的序阻抗模型,并通过单入单出的阻抗稳定判据分析系统稳定性。然而,MMC在低频段呈现较为显著的频率耦合特性,此时正负序阻抗不再解耦,仍使用单入单出的稳定判据无法精确判定系统稳定性。文中通过分析扰动分量与稳态谐波的交互作用,研究了MMC频率耦合产生机理,进一步采用谐波传递矩阵建立了定交流电压控制下MMC频率耦合模型,并分析了频率耦合特性的主要影响因素和对稳定性的影响。最后,基于MATLAB/Simulink搭建的仿真系统结果验证了所建立频率耦合模型精度和系统稳定性分析结果的正确性。

    Abstract:

    The output harmonics and switching losses can be significantly reduced with the application of modular multilevel converter (MMC) in high voltage DC transmission system, while it also brings prominent stability problems. Impedance-based stability analysis method can be applied to analyze the stability problems when MMC system operates. In the existing studies, the sequence impedance model of MMC is derived, which is decoupled into a positive-sequence impedance and a negative-sequence impedance, and the system stability can be determined by single-in-single-out stability criterion. However, MMC exhibits significant frequency coupling characteristic in the low frequency band, making the positive-sequence impedance and negative-sequence impedance no longer decoupled, therefore the single-in-single-out stability criterion cannot accurately determine the system stability. In this paper, the frequency coupling mechanism of MMC is revealed by analyzing the interaction between perturbation and steady-state harmonics. Furthermore, the frequency coupling model of MMC with AC voltage control is derived based on harmonic transfer matrices. Based on the derived model, the influence of frequency coupling characteristic on system stability judgment and the main factor influencing frequency coupling characteristic are analyzed. Finally,the simulation results based on MATLAB/Simulink simulation system validate the correctness of the frequency coupling model and stability analysis results.

    表 2 Table 2
    表 3 Table 3
    图1 MMC平均模型Fig.1 Average model of MMC
    图2 MMC耦合频率扰动谐波产生机理Fig.2 Induced mechanism of coupling frequency harmonics with small disturbance for MMC
    图3 MMC频率耦合模型验证Fig.3 Validation of frequency coupling model for MMC
    图4 MMC频率耦合模型幅频特性曲线Fig.4 Magnitude-frequency curves of frequency coupling model for MMC
    图5 MMC考虑频率耦合的系统稳定性分析结果Fig.5 Analysis results of system stability considering frequency coupling of MMC
    图 MMC控制框图Fig. Control diagram of MMC system
    图 MMC小信号模型传递函数框图Fig. Transfer function diagram of MMC small signal model
    图 环流抑制控制不同带宽下MMC频率耦合幅频特性曲线Fig. Magnitude curves of the frequency coupling model of MMC with different bandwidths of circulating current suppressing control
    图 海上直驱风场接入MMC-HVDC系统结构图Fig. System diagram of offshore PMSG-based wind farm integrated with MMC-HVDC
    图 MMC不考虑频率耦合下系统稳定性分析结果Fig. System stability analysis without considering frequency coupling of MMC
    图 风场-MMC互联系统仿真结果Fig. Simulation result of the wind farm-MMC interconnected system
    表 1 MMC内部谐波相序关系Table 1 Sequence relationship of internal harmonics for MMC
    参考文献
    相似文献
    引证文献
引用本文

年珩,朱茂玮,徐韵扬,等.基于谐波传递矩阵的MMC换流站频率耦合特性建模与分析[J].电力系统自动化,2020,44(6):75-83. DOI:10.7500/AEPS20190804005.
NIAN Heng,ZHU Maowei,XU Yunyang,et al.Modeling and Analysis of Frequency Coupling Characteristic for MMC Station Based on Harmonic Transfer Matrices[J].Automation of Electric Power Systems,2020,44(6):75-83. DOI:10.7500/AEPS20190804005.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-08-04
  • 最后修改日期:2019-09-20
  • 录用日期:
  • 在线发布日期: 2020-03-21
  • 出版日期: