半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
基于准稳态模型的中长期电压稳定轨迹多项式逼近方法
作者:
作者单位:

1.浙江大学电气工程学院,浙江省杭州市 310027;2.国网浙江省电力有限公司,浙江省杭州市 310014;3.国网浙江省电力公司科学研究院,浙江省杭州市 310014

作者简介:

夏冰清(1994—),女,博士研究生,主要研究方向:电力系统稳定性、多项式逼近。E-mail:bqxia@zju.edu.cn
申丹枫(1993—),男,博士研究生,主要研究方向:多项式逼近理论、电力系统不确定性量化。E-mail:dfshen@zju.edu.cn
郑翔(1983—),男,博士,高级工程师,主要研究方向:电力系统调度运行控制、在线安全稳定分析。E-mail:zhengxiang@zj.sgcc.com.cn
吴浩(1973—),男,通信作者,博士,副教授,主要研究方向:电力系统负荷建模、稳定性分析、连锁故障分析、多项式逼近方法应用等。E-mail:zjuwuhao@zju.edu.cn

通讯作者:

吴浩(1973—),男,通信作者,博士,副教授,主要研究方向:电力系统负荷建模、稳定性分析、连锁故障分析、多项式逼近方法应用等。E-mail:zjuwuhao@zju.edu.cn

基金项目:

国家自然科学基金资助项目(51777184);国家电网公司总部科技项目(521104170013)。


Quasi-steady-state Model Based Polynomial Approximation Method of Medium- and Long-term Voltage Stability Trajectory
Author:
Affiliation:

1.College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;2.State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310014, China;3.Electric Power Research Institute of State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310014, China

Fund Project:

This work is supported by National Natural Science Foundation of China (No. 51777184) and State Grid Cooperation of China (No. 521104170013).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对电力系统中存在的影响中长期电压稳定性的可变参数,提出了一种基于准稳态模型的中长期电压稳定轨迹的多项式逼近方法,该方法可以利用所得的多项式逼近函数准确地分析系统参数的变化对中长期电压稳定性的影响。多项式逼近作为分析参数对系统状态影响的有效工具,其基本思想是用多项式近似地表示连续函数,文中在此基础上考虑电力系统中长期过程中的连续动态和离散动态,通过传统伽辽金方法构造出能够显式地描述系统变量与参数之间近似关系的多项式逼近式。与传统的线性化方法相比,由于文中所提方法可以描述系统的非线性特征,所以逼近精度有大幅提升,且方法的精度随着所选多项式基函数阶数的增加而提高。Nordic 74节点系统的算例分析结果表明该方法能在中长期电压稳定问题的研究中提供更准确的分析结果。

    Abstract:

    There are many variable parameters in power systems which affect the stability of medium- and long-term voltage stability, a quasi-steady-state model based polynomial approximation method of medium- and long-term voltage stability trajectory is proposed. With this method, the impact of system parameter variation on medium- and long-term voltage stability can be accurately analyzed by using polynomial approximation function. Polynomial approximation is regarded as an effective tool to analyze the impact of analysis parameters on system state, the basic idea of which is approximating a continuous function with polynomial. Based on it, continuous dynamic and discrete dynamic in medium- and long-term power system are considered, and a polynomial approximation expression which can explicitly describe the approximation relationship between system variables and parameters is formed by the traditional Galerkin method. Compared with the traditional linearization technique, the approximation precision is increased greatly because the proposed method can describe the nonlinear characteristics of the system. In addition, the accuracy of the proposed method increases with the increase of the degree of the selected polynomial basis function. Case analysis results of Nordic 74 node system show that the method can provide more accuracy analysis results in the study of medium- and long-term voltage stability problems.

    表 1 Nordic 74节点系统算例测试场景Table 1 Test scenarios of cases in Nordic 74 node system
    表 3 场景S1中算法计算时间及误差对比Table 3 Comparison of computation time and error in scenario S1
    图1 离散事件发生时系统变量的轨迹Fig.1 Trajectories of system variables with occurrence of discrete event
    图1 离散事件发生时系统变量的轨迹Fig.1 Trajectories of system variables with occurrence of discrete event
    图2 场景S1下参数变化为Δλ3=0和Δλ4=-0.01时节点53的电压逼近轨迹Fig.2 Approximation trajectories of voltage for node 53 with parameter variation Δλ3=0 and Δλ4=-0.01 in scenario S1
    图3 场景S1下参数变化为Δλ3=-0.02和Δλ4=-0.02时节点53的电压逼近轨迹Fig.3 Approximation trajectories of voltage for node 53 with parameter variation Δλ3=-0.02 and Δλ4=-0.02 in scenario S1
    图4 场景S2下参数变化为Δλ3=0.005时节点53的电压逼近轨迹 Fig.4 Approximation trajectories of voltage for node 53 with parameter variation Δλ3=0.005 in scenario S2Fig.4
    图5 场景S2下参数变化为Δλ3=0.001时节点53的电压逼近轨迹Fig.5 Approximation trajectories of voltage for node 53 with parameter variation Δλ3=0.001 in scenario S2
    表 2 采用不同方法时过励限制动作时间逼近值Table 2 Approximation values of switching time of over-excitation limiter by using different methods
    图 场景S1:系统中节点电压的中长期轨迹Fig. Scenario S1: medium- and long-term trajectories of node voltage for system
    图 场景S2:系统中节点电压的中长期轨迹Fig. Scenario S2: medium- and long-term trajectories of node voltage for system
    图 场景S1:不同方法的全局最大误差Fig. Scenario S1: maximum global errors of different methods
    图 场景S1:多项式逼近系数的轨迹Fig. Scenario S1: trajectories of polynomial approximation coefficients
    参考文献
    相似文献
    引证文献
引用本文

夏冰清,申丹枫,郑翔,等.基于准稳态模型的中长期电压稳定轨迹多项式逼近方法[J].电力系统自动化,2020,44(8):116-123. DOI:10.7500/AEPS20190903005.
XIA Bingqing,SHEN Danfeng,ZHENG Xiang,et al.Quasi-steady-state Model Based Polynomial Approximation Method of Medium- and Long-term Voltage Stability Trajectory[J].Automation of Electric Power Systems,2020,44(8):116-123. DOI:10.7500/AEPS20190903005.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-09-03
  • 最后修改日期:2019-11-30
  • 录用日期:
  • 在线发布日期: 2020-04-23
  • 出版日期: