1.清华大学电机工程与应用电子技术系,北京市 100084;2.国家电网有限公司华北分部,北京市 100053
电动汽车作为一类重要的新型可控负荷资源,具有为电网提供调控服务的潜力。然而电动汽车的调节能力受其出行安排的影响,既呈现出一定的规律性,也具有不确定性。首先,提出一种电动汽车调节能力模型,该模型可以统一考虑数据结构不同的公共充电站与专用充电站,进而采用数据驱动的分布鲁棒机会约束来描述调节能力的不确定性。考虑聚合了多个不同类型充电站的充电运营商参与调峰辅助服务市场的日前投标阶段,提出一种双层投标-分配模型,使得运营商对外可以控制风险,对内可以灵活调度资源。基于实际数据的仿真结果表明,分布鲁棒机会约束描述的调节能力可以适应电动汽车出行规律的随机变化,所提出的投标-分配策略能够灵活地权衡运营商的经济效益与违约风险。
国家自然科学基金资助项目(U1766205);国家电网公司科技项目(2600/2020-02001B)。
文艺林(1997—),男,博士研究生,主要研究方向:电动汽车与电网互动、电力系统运行与优化。E-mail:wen-yl20@mails.tsinghua.edu.cn
胡泽春(1979—),男,博士,副教授,博士生导师,主要研究方向:智能电网、电动汽车、电力系统优化与运行等。E-mail:zechhu@tsinghua.edu.cn
宁剑(1986—),男,通信作者,硕士,高级工程师,主要研究方向:自动发电控制、源网荷储协同互动等。E-mail: ning.jian@nc.sgcc.com.cn
1.Department of Electrical Engineering, Tsinghua University, Beijing 100084, China;2.North China Branch of State Grid Corporation of China, Beijing 100053, China
As an important new type of flexible load resource, electric vehicles (EVs) have the potential to provide regulatory services for the power grid. However, the controllability of EVs is affected by their traveling arrangements, which shows the regularity and uncertainty. Firstly, this paper proposes a flexibility model of EVs, which can consider the difference in the data structure of public charging piles and specific charging piles. Besides, the uncertainty of the flexibility is described using the data-driven distributionally robust chance constraint (DRCC). Furthermore, considering a charging operator aggregating different types of charging stations participating in the peak regulation ancillary service market, the paper proposes a bi-layer bidding and allocating model, which enables the charging operator to manage the risk outside and to flexibly dispatch resources inside. Simulation results based on the actual data indicate that the flexibility described by the DRCC can adapt to the random changes of traveling law of EVs, and the proposed bidding and allocating strategy can effectively manage the revenue of the charging operator and the default risk.
[1] | 文艺林,胡泽春,宁剑,等.基于分布鲁棒机会约束的充电运营商参与调峰市场投标策略[J].电力系统自动化,2022,46(7):23-32. DOI:10.7500/AEPS20210716004. WEN Yilin, HU Zechun, NING Jian, et al. Bidding Strategy of Charging Operator Participating in Peak Regulation Market Based on Distributionally Robust Chance Constraint[J]. Automation of Electric Power Systems, 2022, 46(7):23-32. DOI:10.7500/AEPS20210716004. |