1.北京工业大学信息学部,北京市 100124;2.中国科学院电工研究所,北京市 100190
可再生能源发电的随机波动性和储能运行控制的时间序列耦合特性给微电网的能量管理与最优运行带来了诸多挑战,成为学术界研究的热点问题。文中提出一种基于改进竞争深度Q网络算法的微电网能量管理与优化方法,采用多参数动作探索机制和优化设计的神经网络结构,对分布式可再生能源的功率输出、能源交易市场的电价和电力负荷的状态等环境信息进行学习,并运用学习到的策略进行微电网能量管理与优化。仿真结果表明,基于改进竞争深度Q网络算法的微电网能量管理与优化策略的性能优于基于场景的随机规划算法、深度Q网络算法和竞争深度Q网络算法。
国家自然科学基金资助项目(51777202);中国科学院青年创新促进会资助项目(2021136)。
黎海涛(1972—),男,博士,副教授,硕士生导师,主要研究方向:智能通信计算。E-mail:lihaitao@bjut.edu.com
申保晨(1995—),男,硕士研究生,主要研究方向:物联网、深度强化学习在微电网中的应用。E-mail:1556016623@qq.com
杨艳红(1985—),男,通信作者,副研究员,主要研究方向:电力系统运行控制与优化方法、人工智能在电力系统中的应用。E-mail:yangyanhong@mail.iee.ac.cn
1.Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China;2.Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
The stochastic volatility of renewable energy generation and the time series coupling characteristics of energy storage operation control bring many challenges to the energy management and optimal operation of microgrid, which becomes a hot issue for academic research. This paper proposes an energy management and optimization strategy for microgrid based on improved dueling deep Q network (DQN) algorithm. The strategy adopts a multi-parameter operation exploration mechanism and an optimally designed neural network structure to learn the environmental information such as the power output of distributed renewable energy, the electricity price of energy trading market and the state of electric load, and applies the learned strategy to microgrid energy management and optimization. The simulation results show that the performance of the energy management and optimization strategy for microgrid based on the improved dueling DQN algorithm is better than the scenario-based stochastic programming algorithm, the DQN algorithm and the dueling DQN algorithm.
[1] | 黎海涛,申保晨,杨艳红,等.基于改进竞争深度Q网络算法的微电网能量管理与优化策略[J].电力系统自动化,2022,46(7):42-49. DOI:10.7500/AEPS20210809002. LI Haitao, SHEN Baochen, YANG Yanhong, et al. Energy Management and Optimization Strategy for Microgrid Based on Improved Dueling Deep Q Network Algorithm[J]. Automation of Electric Power Systems, 2022, 46(7):42-49. DOI:10.7500/AEPS20210809002. |