东北电力大学电气工程学院,吉林省吉林市 132012
风电功率预测对含风电的电力系统经济调度十分重要。针对点预测难以描述风电功率不确定性的问题,提出一种基于组合模态分解和深度学习的短期风电功率区间预测方法。首先,利用改进自适应噪声完备集合经验模态分解将原始风电功率序列分解为多个模态分量,并使用变分模态分解对其中的高频强非平稳分量再次分解。在此基础上,使用样本熵计算各分量复杂度并将其重构为趋势分量、振荡分量和随机分量。然后,将3个分量分别输入经贝叶斯优化的双向长短期记忆神经网络建立各自的预测模型,得到3个分量的点预测值,并用混合核密度估计方法对振荡分量和随机分量预测结果的误差分布进行估计,再结合点预测值得到总体的区间预测结果。最后,通过实际算例分析表明,与其他模型相比该方法具有更高的预测精度。
国家重点研发计划资助项目(2017YFB0902205);吉林省产业创新专项基金资助项目(2019C058-7)。
肖白(1973—),男,通信作者,博士,教授,博士生导师,主要研究方向:电力系统规划、空间电力负荷预测、多种能源互补协调发电、电价套餐设计、电能质量综合治理等。E-mail:xbxiaobai@126.com
张博(1998—),男,硕士研究生,主要研究方向:多种能源互补协调发电。E-mail:599939246@qq.com
王辛玮(1998—),男,硕士研究生,主要研究方向:光热发电。E-mail:865853578@qq.com
School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China
Wind power prediction is very important for the economic dispatch of power systems with wind power. Aiming at the problem that point prediction is difficult to describe the uncertainty of wind power, a short-term wind power interval prediction method based on combined mode decomposition and deep learning is proposed. First, the original wind power sequence is decomposed into multiple modal components by using the improved complete ensemble empirical mode decomposition with adaptive noise, and the high-frequency strong non-stationary components are decomposed again by using the variational mode decomposition. On this basis, the sample entropy is used to calculate the complexity of each component and reconstruct them into trend components, oscillation components and random components. Then, the three components are input into the Bayesian optimization bidirectional long short-term memory neural network to establish their respective prediction models, and the point prediction values of the three components are obtained. The mixed kernel density estimation method is used to estimate the error distribution of the prediction results of oscillation components and random components, and the overall interval prediction results are obtained by combining the point prediction values. Finally, the actual example analysis shows that this method has higher prediction accuracy than other models.
[1] | 肖白,张博,王辛玮,等.基于组合模态分解和深度学习的短期风电功率区间预测[J].电力系统自动化,2023,47(17):110-117. DOI:10.7500/AEPS20220807002. XIAO Bai, ZHANG Bo, WANG Xinwei, et al. Short-term Wind Power Interval Prediction Based on Combined Mode Decomposition and Deep Learning[J]. Automation of Electric Power Systems, 2023, 47(17):110-117. DOI:10.7500/AEPS20220807002. |