1.天津大学电气自动化与信息工程学院,天津市 300072;2.国网河北省电力有限公司经济技术研究院,河北省石家庄市 050021
压缩感知(CS)应用于高级量测体系(AMI)时需解决重构精度低的难题。为此,文中深入探索了一种基于多维CS的AMI(AMI-mdCS)优化构建方法,利用多个智能电表间的数据相关性提高重构精度。首先,根据AMI的结构特征,分析了AMI-mdCS的基本原理;然后,以提升模型对AMI的适应性为目标,分别基于克罗内克CS(KCS)和多测量向量(MMV)构建高维AMI-KCS模型和二维AMI-MMV模型,并给出了两个模型的具体流程;最后,针对模型中关键要素的设计,提出了一种基于奇异值分解的稀疏基和测量矩阵联合训练(JTSM-SVD)算法。相比于一维模型,AMI-KCS模型和AMI-MMV模型可显著提升重构信噪比且前者模型的提升效果更优。相比于传统训练算法,JTSM-SVD算法亦可进一步优化重构效果。
天津市自然科学基金资助项目(22JCZDJC00820)。
袁博(1989—),男,通信作者,博士研究生,高级工程师,主要研究方向:压缩感知在电力系统中的应用、智能电网信号处理、能源互联网结构优化与运行控制等。E-mail:yuanbo7396@163.com.cn
刘洪(1978—),男,教授,博士生导师,主要研究方向:配电网规划与运行控制、综合能源系统分析。E-mail:liuhong@tju.edu.cn
葛少云(1962—),男,教授,博士生导师,主要研究方向:配电网规划与运行控制、综合能源系统分析。E-mail:syge@tju.edu.cn
1.School of Electrical Automation and Information Engineering, Tianjin University, Tianjin300072, China;2.Economic and Technology Research Institute of State Grid Hebei Electric Power Co., Ltd., Shijiazhuang050021, China
When compressed sensing (CS) is applied to advanced metering infrastructure (AMI) systems, it is necessary to solve the problem of low reconstruction accuracy. Therefore, an optimal construction method for AMI based on multidimensional CS (AMI-MDCS) is deeply explored in this paper, and the data correlation among multiple smart meters is used to improve the reconstruction accuracy. Firstly, the basic principle of AMI-MDCS is analyzed according to the structural characteristics of AMI. Then, in order to improve the adaptability of the model to AMI, based on Kronecker CS (KCS) and multiple measurement vectors (MMV), a high-dimensional AMI-KCS model and a two-dimensional AMI-MMV model are constructed, and the specific processes of the two models are given. Finally, a joint training for sparse-basis and measurement-matrix based on singular value decomposition (JTSM-SVD) algorithm is proposed for the design of key elements in the model. Compared with one-dimensional model, AMI-KCS model and AMI-MMV model can significantly improve the reconstruction signal-to-noise ratio, and the former model has better improvement effect. Compared with the traditional training algorithm, JTSM-SVD algorithm can further optimize the reconstruction effect.
[1] | 袁博,刘洪,葛少云.基于多维压缩感知的电网高级量测体系优化构建方法[J].电力系统自动化,2024,48(23):167-176. DOI:10.7500/AEPS20240105004. YUAN Bo, LIU Hong, GE Shaoyun. Optimal Construction Method for Advanced Metering Infrastructure of Power Grid Based on Multidimensional Compressed Sensing[J]. Automation of Electric Power Systems, 2024, 48(23):167-176. DOI:10.7500/AEPS20240105004. |