半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
基于大语言模型的配电主站日志异常检测
作者:
作者单位:

1.华北电力大学控制与计算机工程学院;2.南京南瑞信息通信科技有限公司;3.国网江苏省电力有限公司;4.国网江苏省电力有限公司电力科学研究院

摘要:

日志异常检测是监控配电主站系统运行并识别异常行为的关键技术之一。已有的基于深度学习的日志异常检测方法依赖于大量的带标注的训练数据,而在配电主站系统中缺少带标注训练数据,这会导致日志异常检测性能显著下降。针对上述问题,基于大语言模型的上下文推理特性,提出了一种无需训练的配电主站日志异常检测方案LogAdapt。设计演示示例筛选算法,针对不同在线日志,从少量带标注的本地日志中动态筛选出若干高质量的演示示例;结合任务描述和人类经验知识,自动构建出文本提示,以指导大语言模型完成配电主站日志异常检测任务。实验结果表明,所提方案相比现有方案性能更优,尤其在真实配电主站数据集上,性能提升60%以上,对提升配电主站安全具有很强的实用价值。

关键词:

基金项目:

通信作者:

作者简介:


Anomaly Detection in Distribution Main Station Logs Based on Large Language Model
Author:
Affiliation:

Abstract:

Log anomaly detection is one of the key technologies to monitor the operation of distribution master station system and identify abnormal behavior. Existing log anomaly detection methods based on deep learning rely on a large amount of in-domain training data, and the scarcity of training data will lead to a significant decline in performance. Aiming at the above problems, based on the contextual reasoning characteristics of large language models, an adaptive hint strategy is designed and a training-free anomaly detection scheme for distribution master logs is implemented. Firstly, a demonstration example filtering algorithm is designed to dynamically select several high-quality demonstration examples from a small number of labeled local logs for different online logs. Then, combined with the task description and human experience knowledge, a text hint is automatically constructed to guide the large language model to complete the anomaly detection task of distribution master station logs. The experimental results on the general data set and the self-built distribution master station data set show that the proposed scheme has better performance than the existing methods, showing higher flexibility and generalization.

Keywords:

Foundation:
引用本文
[1]王申,魏兴慎,朱卫平,等.基于大语言模型的配电主站日志异常检测[J/OL].电力系统自动化,http://doi. org/10.7500/AEPS20240523001.
Wang Shen, WEI Xingshen, ZHU Weiping, et al. Anomaly Detection in Distribution Main Station Logs Based on Large Language Model[J/OL]. Automation of Electric Power Systems, http://doi. org/10.7500/AEPS20240523001.
复制
支撑数据及附录
分享
历史
  • 收稿日期:2024-05-23
  • 最后修改日期:2025-02-21
  • 录用日期:2024-10-25
  • 在线发布日期: 2025-02-27
  • 出版日期: