半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
考虑屋顶光伏热效应的短期净负荷预测
作者:
作者单位:

1.上海电力大学电气工程学院,上海市 200090;2.湖北省低频电磁通信技术重点实验室,湖北省武汉市 430074;3.上海师范大学数理学院,上海市 200234

摘要:

对于隔热性能差、表面积大的低层工业建筑,其屋顶光伏组件的遮阳保温效应会对建筑日负荷的大小、波动规律产生巨大影响。而净负荷预测的研究大多着眼于负荷与光伏的单一特征,鲜少考虑光伏对负荷的热效应。针对以上不足,文中以上海某地工业建筑作为研究对象,通过热平衡法构建光伏-屋顶集成传热模型,对光伏屋顶全年热效应进行计算,并通过相关性分析验证了逐时传热量、光伏电池温度分别与负荷、光伏出力具有较强的相关性。随后,为更准确地提取负荷的行为特征,文中基于传热量的波形特征对各个季节的日负荷进行聚类分析。最后,以传热特征作为输入要素,双向长短期记忆网络作为预测算法,提出一种考虑屋顶光伏热效应的短期净负荷预测方法,对该建筑各个季节的净负荷数据进行预测建模计算和误差分析,并使用长短期记忆网络-注意力机制、长短期记忆网络与极限学习机进行横向对比。结果表明,所提方法能够显著提升净负荷的预测精度。

关键词:

基金项目:

国家自然科学基金资助项目(12071298); 已申请国家发明专利(申请号:2024109698525)。

通信作者:

作者简介:


Short-term Net Load Forecasting Considering Thermal Effect of Rooftop Photovoltaic
Author:
Affiliation:

1.College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China;2.Hubei Provincial Key Laboratory for Low-frequency Electromagnetic Communication Technology, Wuhan 430074, China;3.School of Mathematical Sciences, Shanghai Normal University, Shanghai 200234, China

Abstract:

For low-rise industrial buildings with poor thermal insulation performance and large surface area, the shading and insulation effect of their rooftop photovoltaic modules will have a huge impact on the magnitude and fluctuation pattern of the daily load. However, research on net load forecasting mostly focuses on the single characteristics of load and photovoltaic, with little consideration given to the thermal effects of photovoltaics on load. In response to the above shortcomings, this paper takes an industrial building in Shanghai as the research object, constructs a photovoltaic-rooftop integrated heat transfer model through the thermal balance method, calculates the annual thermal effect of rooftop photovoltaic, and verifies the strong correlation between hourly heat transfer and photovoltaic cell temperature with load and photovoltaic output through correlation analysis. Subsequently, in order to more accurately extract the behavior characteristics of the load, the paper conductes cluster analysis on the daily load of each season based on the waveform features of heat transfer. Finally, using heat transfer characteristics as input factors and bi-directional long short-term memory network as forecasting algorithm, a short-term net load forecasting method considering the thermal effect of rooftop photovoltaic is proposed. The net load data of the building in each season is forecasted, modeled, calculated, and error analyzed. Horizontal comparison with long short-term memory network-attention mechanism, long short-term memory network and extreme learning machine shows that the proposed method can significantly improve the accuracy of net load forecasting.

Keywords:

Foundation:
This work is supported by National Natural Science Foundation of China (No. 12071298).
引用本文
[1]李芬,李雨欣,王亚维,等.考虑屋顶光伏热效应的短期净负荷预测[J/OL].电力系统自动化,http://doi. org/10.7500/AEPS20240723006.
LI Fen, LI Yuxin, WANG Yawei, et al. Short-term Net Load Forecasting Considering Thermal Effect of Rooftop Photovoltaic[J/OL]. Automation of Electric Power Systems, http://doi. org/10.7500/AEPS20240723006.
复制
支撑数据及附录
分享
历史
  • 收稿日期:2024-07-23
  • 最后修改日期:2025-03-13
  • 录用日期:2024-12-30
  • 在线发布日期: 2025-03-21
  • 出版日期: